Naturales 8

por | agosto 3, 2017

Unidad 1 – Página 21
TIC

Partícula subatómica. Es una partícula más pequeña que el átomo. Puede ser una partícula elemental o una compuesta, a su vez, por otras partículas subatómicas, como son los quarks, que componen los protones y neutrones.

No obstante, existen otras partículas subatómicas, tanto compuestas como elementales, que no son parte del átomo, como es el caso de los neutrinos y bosones.La física de partículas y la física nuclear se ocupan del estudio de estas partículas, sus interacciones y de la materia que las forma y que no se agrega en los átomos. La mayoría de las partículas elementales que se han descubierto y estudiado no pueden encontrarse en condiciones normales en la Tierra, generalmente porque son inestables (se descomponen en partículas ya conocidas), o bien, son difíciles de producir de todas maneras.

Estas partículas, tanto estables como inestables, se producen al azar por la acción de los rayos cósmicos al chocar con átomos de la atmósfera, y en los procesos que se dan en los aceleradores de partículas, los cuales imitan un proceso similar al primero, pero en condiciones controladas. De estas maneras, se han descubierto docenas de partículas subatómicas, y se teorizan cientos de otras más. Ejemplos de partículas teóricas son el gravitón y el bosón de Higgs; sin embargo, éstas y muchas otras no han sido observadas en aceleradores de partículas modernos, ni en condiciones naturales en la atmósfera (por la acción de rayos cósmicos).

Como partículas subatómicas, se clasifican también las partículas virtuales, que son partículas que representan un paso intermedio en la desintegración de una partícula inestable, y por tanto, duran muy poco tiempo.

Modelos atómicos

Los primeros modelos atómicos consideraban básicamente tres tipos de partículas subatómicas: protones, electrones y neutrones. Más adelante el descubrimiento de la estructura interna de protones y neutrones, reveló que estas eran partículas compuestas. Además el tratamiento cuántico usual de las interacciones entre las partículas comporta que la cohesión del átomo requiere otras partículas bosónicas como los piones, gluones o fotones.

Los protones y neutrones por su parte están constituidos por quarks. Así un protón está formado por dos quarks up y un quark down. Los quarks se unen mediante partículas llamadas gluones. Existen seis tipos diferentes de quarks (up, down, bottom, top, extraño y encanto). Los protones se mantienen unidos a los neutrones por el efecto de los piones, que son mesones compuestos formados por parejas de quark y antiquark (a su vez unidos por gluones). Existen también otras partículas elementales que son responsables de las fuerzas electromagnética (los fotones) y débil (los neutrinos y los bosones W y Z).

Los electrones, que están cargados negativamente, tienen una masa 1/1836 de la del átomo de hidrógeno, proviniendo el resto de su masa del protón. El número atómico de un elemento es el número de protones (o el de electrones si el elemento es neutro). Los neutrones por su parte son partículas neutras con una masa muy similar a la del protón. Los distintos isótopos de un mismo elemento contienen el mismo número de protones pero distinto número de neutrones. El número másico de un elemento es el número total de protones más neutrones que posee en su núcleo.

Propiedades

Las propiedades más interesantes de las 3 partículas constituyentes de la materia existente en el universo son:

  • Protón. Se encuentra en el núcleo. Su masa es de 1,6×10-27 kg.[1] Tiene carga positiva igual en magnitud a la carga del electrón. El número atómico de un elemento indica el número de protones que tiene en el núcleo. Por ejemplo el núcleo del átomo de hidrógeno contiene un único protón, por lo que su número atómico (Z) es 1.
  • Electrón. Se encuentra en la corteza. Su masa aproximadamente es de 9,1×10-31 kg. Tiene carga eléctrica negativa (-1.602×10-19 C).[2]
  • Neutrón. Se encuentra en el núcleo. Su masa es casi igual que la del protón. No posee carga eléctrica.

El concepto de partícula elemental es hoy algo más oscuro debido a la existencia de cuasipartículas que si bien no pueden ser detectadas por un detector constituyen estados cuánticos cuya descripción fenomenológica es muy similar a la de una partícula real.

Historia

En la Grecia clásica, un átomo era concebido como la parte más pequeña e indivisible constituyente de la materia, provisto de unos ganchitos que los mantenían unidos a los otros átomos.

Fue el desarrollo de la química la que consiguió establecer un número determinado de constituyentes de toda la materia existente y medibe en la Tierra. Sus hallazgos dieron su mayor fruto de la mano de Dmitri Mendeléyev, al concretar de una forma sencilla todos los posibles átomos (definiendo de hecho la existencia de algunos no descubiertos hasta tiempo después).

Más adelante se descubrió que, si bien los recién definidos átomos cumplían la condición de ser los constituyentes de toda la materia, no cumplían ninguna de las otras dos condiciones. Ni eran la parte más pequeña ni eran indivisibles. Sin embargo se decidió mantener el término átomo para estos constituyentes de la materia.

La electroquímica liderada por G. Johnstone Stoney, dio lugar al descubrimiento de los electrones (e-) en 1874, observado en 1897 por Joseph John Thomson. Estos electrones daban lugar a las distintas configuraciones de los átomos y de las moléculas. Por su parte en 1907 los experimentos de Ernest Rutherford revelaron que gran parte del átomo era realmente vacío, y que casi toda la masa se concentraba en un núcleo relativamente pequeño.

El desarrollo de la teoría cuántica llevó a considerar la química en términos de distribuciones de los electrones en ese espacio vacío. Otros experimentos demostraron que existían unas partículas que formaban el núcleo: el protón (p+) y el neutrón (n) (postulado por Rutherford y descubierto por James Chadwick en 1932). Estos descubrimientos replanteaban la cuestión de las partes más pequeñas e indivisibles que formaban el universo conocido. Se comenzó a hablar de las partículas subatómicas.

Más tarde aún, profundizando más en las propiedades de los protones, neutrones y electrones se llegó a la conclusión de que tampoco estos (al menos los dos primeros) podían ser tratados como la parte más pequeña, ni como indivisibles, ya que los quarks daban estructura a los nucleones. A partir de aquí se empezó a hablar de partículas cuyo tamaño fuese inferior a la de cualquier átomo. Esta definición incluía a todos los constituyentes del átomo, pero también a los constituyentes de esos constituyentes, y también a todas aquellas partículas que, sin formar parte de la materia, existen en la naturaleza. A partir de aquí se habla de partículas elementales.

En 1897Joseph John Thomson descubre el electrón. Albert Einstein interpreta el efecto fotoelétrico como una evidencia de la existencia real del fotón. Anteriormente, en 1905Max Planck había postulado el fotón como un quantum de energía electromagnética mínimo para resolver el problema de termodinámica de la radiación del cuerpo negro.

Por su parte Ernest Rutherford descubrió en 1907 en el famoso experimento de la lámina de oro que casi la totalidad de la masa de un átomo estaba concentrada en una muy pequeña parte de él, que posteriormente se llamaría núcleo atómico, siendo el resto vacío. El desarrollo continuado de estas ideas llevó a la mecánica cuántica, algunos de cuyos primeros éxitos incluyeron la explicación de las propiedades del átomo.

Muy pronto se identificó una nueva partícula, el protón, como constituyente único del núcleo del hidrógeno. Rutherford también postuló la existencia de otra partícula, llamada neutrón, tras su descubrimiento del núcleo. Esta partícula fue descubierta experimentalmente en 1932 por James Chadwick. A estas partículas se sumó una larga lista: Wolfgang Pauli postuló en 1931 la existencia del neutrino para explicar la aparente pérdida de la conservación de la cantidad de movimiento que se daba en la desintegración beta. Enrico Fermi fue quien inventó el nombre. La partícula no fue descubierta hasta 1956.

Fue Hideki Yukawa quién postuló la existencia de los piones para explicar la fuerza fuerte que unía a los nucleones en el interior del núcleo. El muon se descrubrió en 1936, pensándose inicialmente de forma errónea que era un pion. En la década de los 50 se descubrió el primer kaón entre los rayos cósmicos.

El desarrollo de nuevos aceleradores de partículas y detectores de partículas en esa década de los 50 llevó al descubrimiento de un gran número de hadrones, junto con los hadrones compuestos aparecieron series de partículas que parecían duplicar las funciones y carácterísticas de partículas más pequeñas. Así se descubrió otro “electrón pesado”, además del muon, el tauón, así como diversas series de quarks pesados. Ninguna de las partículas de estas series más pesadas parece formar parte de los átomos de la materia ordinaria.

La clasificación de esos hadrones a través del modelo de quarks en 1961 fue el comienzo de la edad de oro de la física moderna de partículas, que culminó en la completitud de la teoría unificada llamada el modelo estándar en la década de los 70.

La confirmación de la existencia de los bosones de gauge débil en la década de los 80 y la verificación de sus propiedades en los 90 se considera como la era de la consolidación de la física de partículas. Entre las partículas definidas por el modelo estándar, aun permanece sin descubrir el bosón de Higgs. Por ello este es el objetivo primordial del acelerador Large Hadron Collider (LHC) del CERN. El resto de partículas conocidas encaja a la perfección con el modelo estándar.

Partículas elementales

Las partículas subatómicas de las cuales se sabe su existencia son: Bosón Positrón Electrón Protón Fermión Neutrino Hadrón Neutrón Leptón Quark Mesón

Las partículas están formadas por componentes atómicos como los electrones, protones y neutrones, (los protones y los neutrones son partículas compuestas), estas están formadas de quarks. Los Quarks se mantienen unidos por las partículas gluon que provocan una interacción en los quarks y son indirectamente responsables por mantener los protones y neutrones juntos en el núcleo atómico.

Bosón

El bosón es una partícula atómica o subatómica, de spin entero o nulo, que cumple los postulados de la estadística de Bose-Einstein e incumple el principio de exclusión de Paulli (establece que dos electrones no pueden ocupar el mismo estado energético). Son bosones las partículas alfa, los fotones y los nucleidos con un número par de nucleones.

Fermión

Es una partícula perteneciente a una familia de partículas elementales caracterizada por su momento angular intrínseco o spin. Los fermiones son nombrados después de Enrico Fermi, en el modelo estándar, existen dos tipos de fermiones elementales, que son: Los quarks y los leptones. Según la teoría cuantica, el momento angular de las partículas solo puede adoptar determinados valores, que pueden ser múltiplos enteros de una determinada constante h (Constante de Planck) o múltiplos semientereos de esa misma constante.

Los fermiones, entre los que se encuentran los electrones, los protones y los neutrones, tienen múltiplos semienteros de h, por ejemplo ±1/2h o ±3/2h. Los fermiones cumplen el principio de exclusión. El nucleo de un átomo es un fermion o boson, dependiendo de si el número total de sus protones y neutrones es par o impar respectivamente. Recientemente, los científicos han descubierto que esto causa comportamiento muy extraño en ciertos átomos cuando son sometidos a condiciones inusuales, tal como el helio demasiado frió.

Quarks

El nombre genérico con que se designan los constituyentes de los hadrones. La teoría sobre los quarks se inicio a partir de los trabajos de Gell-Mann y Zweig (1966) y su existencia fue confirmada en 1977 (Por Fairbank y otros).

La física dedicada al estudio de la naturaleza fundamental de la materia ha formulado un modelo estándar, capaz de explicar una serie de hechos e incapaz de dar respuesta a otros. Este modelo se basa en la actualidad en la hipótesis de que la materia ordinaria esta formada por dos clases de partículas, los quarks (que se combinan para formar partículas mayores) y los leptones, además de que las fuerzas que actúan entre ellas se transmiten mediante una tercera clase de partículas llamadas bosones, que ya explicamos anteriormente. El spin de los quarks es de ½, hay seis tipos distintos de quarks que los físicos han denominado de la siguiente manera: up, down, charm, strange, top, y bottom además de los correspondientes antiquarks.

Leptón

Nombre que recibe cada una de las partículas elementales de spin igual a +1/2 y masa inferior a la de los mesones. Los leptones son fermiones entre los que se establecen interacciones débiles, y solo interacciones electromagnéticas si poseen carga eléctrica. Además, los leptones con carga eléctrica se encuentran casi siempre unidos a un neutrino asociado.

Existen tres tipos de leptones: el electrón, el muon y el tau. Cada uno esta representado por un par de partículas. Una es una partícula masivamente cargada, que lleva el mismo nombre que su partícula, (Como el electrón). La otra es una partícula neutral casi sin masa llamada neutrino (tal como el electrón neutrino). Todas estas 6 partículas tienen antipartículas correspondientes (tales como el positrón o el electrón antineutrino).

Todo los leptones cargados tienen una sola unidad de energía positiva o negativa (de acuerdo a si son partículas o antipartículas) y todos los neutrinos y antineutrinos tienen cero carga eléctrica. Los leptones cargados tienen 2 posibles giros de spin mientras que una sola helicidad es observada para los neutrinos (Todos los neutrinos son zurdos y los antineutrinos diestros).

Los leptones obedecen a una simple relación conocida como la formula Koide. Cuando las partículas interactúan, generalmente el numero de leptones del mimo tipo (electrones y electrones neutrinos, muones y muones neutrinos, leptones tau y tau neutrinos) se mantienen igual. Este principio es conocido como la conservación del numero lepton.

Hadrones

El hadron es una partícula subatómica compuesta de quarks, caracterizada por relacionarse mediante interacciones fuertes. Aunque pueden manifestar también interacciones débiles y electromagnéticas, en los hadrones predominan las interacciones fuertes, que son las que mantienen la cohesión interna en el núcleo atómico.

Estas partículas presentan dos categorías: los bariones formados por tres quarks, como el neutron y el protón y los mesones, formados por un quark y un antiquark, como el pion. La mayoría de los hadrones pueden ser clasificados con el modelo quark que implica que todos los números cuanticos de bariones son derivados de aquellos de valencia quark.

Neutrino

Partícula nuclear elemental eléctricamente neutra y de masa muy inferior a la del electrón (posiblemente nula). El neutrino es un fermión; su espín es 1/2. Antes del descubrimiento del neutrino, parecía que en la emisión de electrones de la desintegración beta no se conservaban la energía, el momento y el espín totales del proceso. Para explicar esa incoherencia, el físico austriaco Wolfgang Pauli dedujo las propiedades del neutrino en 1931.

Al no tener carga y poseer una masa despreciable, el neutrino es extremadamente difícil de detectar; las investigaciones confirmaron sus peculiares propiedades a partir de la medida del retroceso que provoca en otras partículas. Billones de neutrinos atraviesan la Tierra cada segundo, y sólo una minúscula proporción de los mismos interacciona con alguna otra partícula. Los físicos estadounidenses Frederick Reines y Clyde Lorrain Cowan, hijo, obtuvieron pruebas concluyentes de su existencia en 1956.

La antipartícula del neutrino es emitida en los procesos de desintegración beta que producen electrones, mientras que los neutrinos se emiten junto con positrones en otras reacciones de desintegración beta. Algunos físicos conjeturan que en una extraña forma de radiactividad, llamada doble desintegración beta, dos neutrinos pueden, en ocasiones, fusionarse para formar una partícula a la que denominan “mayorón”. Otro tipo de neutrino de alta energía, llamado neutrino muónico, es emitido junto con un muón cuando se desintegra un pión.

Cuando un pión se desintegra, debe emitirse una partícula neutra en sentido opuesto al del muón para conservar el momento. La suposición inicial era que esa partícula era el mismo neutrino que conserva el momento en la desintegración beta. En 1962, sin embargo, las investigaciones demostraron que el neutrino que acompaña la desintegración de piones es de tipo diferente. También existe un tercer tipo de neutrino, el neutrino tau (y su antipartícula).

Actualmente, la posibilidad de que los neutrinos puedan oscilar entre una forma y otra resulta de gran interés. Hasta ahora, las pruebas en ese sentido son indirectas, pero de confirmarse sugerirían que el neutrino tiene una cierta masa, lo que tendría implicaciones profundas para la cosmología y la física en general: esta masa adicional en el universo podría suponer que el universo no siga expandiéndose indefinidamente sino que acabe por contraerse. Aunque existen distintas interpretaciones, algunos científicos consideran que la información sobre neutrinos obtenida de la supernova SN 1987A apoya la idea de que el neutrino tiene masa.

Mesón

Nombre que recibe cada una de las partículas elementales sometidas a interacciones fuertes, de espín nulo o entero y carga bariónica nula.

Los mesones, identificados por Powell en 1947 en los rayos cósmicos y cuya existencia había sido postulada por Yukawa en 1935, son partículas inestables, de masa generalmente comprendida entre la de los electrones y la de los neutrones. Los más estables, cuya vida media es del orden de la cienmillonésima de segundo, son los piones y los kaones.

Partículas subatómicas. (s.f.). EcuRed. conocimiento con todos y para todos.  Recuperado de http://goo.gl/YsUdrH

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *